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Propagation of photons in resting and moving media
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The propagation of photon in a dielectric may be described with the help of the scalar and vector potentials
of the medium. The main novelty of the paper is that the concept of the vector poterttieh is connected
with the velocity of the mediumncan be extended to relativistic velocities of the medium. The position-
dependent photon wave function was used to describe the propagation of the photon. The new concepts of the
velocity of photon as particle and the photon mass in the dielectric medium were proposed.
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[. INTRODUCTION logs of electric and magnetic fields, and the optical analog of
the Lorentz forcgacting on the photon in the mediunThe

Consider a photon in a dielectric medium. But what is apotentials are gauge fields and the analogs of electric and
photon? In modern physics a photon is nothing more tharmnagnetic fields are gauge invariant.
guantum excitation of the electromagnetic field. We have
learned from quantum electrodynamics that in the dielectric, Il. THE SCALAR POTENTIAL OF MEDIUM
in fact, there are no photons but polaritons, i.e., excitations of
electromagnetic field coupled to the medium. However, a,
different point of view is also possible. Remember the case

In Refs. [1-3] the following form of the Schidinger
guation for free photon was proposed:

of an electron in an external electromagnetic field. On the ihdF=H(F, (1)
first quantization level the electron is treated as a quantum

object moving in the classical field. In this paper | develop a E(t,r)+iH(t,r) p-S,0

similar description for a photon. The photon treated as a :[E(t,r)—iH(t,r) ' Hf:c[o,_p.s}' 2

guantum object “feels” the medium as an external classical _ _ .

field. To describe a photon in terms of a one-particle waved=—i%V, momentum of photon;§),;= —isii , spin pho-

function, i.e., on thefirst quantization level, | follow the ton matrix (g, antisymmetric Levi-Civita symbal

methods presented in Refgl—3]. Another approach was On the classical language, the equations are equivalent to

proposed in Ref.[4]. The concept of the position- the following Maxwell equations:

representation photon wave function has a long history and is . _ _ _

still controversial. Nevertheless | do not want to discuss the ~ tE=CVXH, dH=—cVXE, D=E B=H, ®)

question here. The reader interested in this problem is rejescribing free fields in vacuum. Since all the information

ferred to Refs[1-4] and references therein. carried by functionF is contained in its positive energy
The paper is organized in the following way. In Sec. Il, I (positive frequencypartF(*), following Ref.[3], | take this

develop the description of a photon in a medium in terms ofya1t as the true photon wave function and denote ias
the photon wave function. Some attempts of this kind have

been presented in Refd—3]. What is new in my approach Y=F), (4)

is to show that the influence of the medium on the photon )

can be described through some potentials. Generally the ide? Pecome a complete set of Maxwell equations, E).

is not new, see, e.g., Refi,6], but here | realize it within Must be supplied by divergence conditioWsE=0, V- H

the formalism of the photon wave function. On this basis, in=0- It iS equivalent to the relatiop- ¢=0. o
Sec. Ill, the nonzero mass of the photon and the concept of !N order to describe the propagation of the photon in di-
the velocity of the photon as a particle appear in a quitee_lectrlc, one should _mclude in the Ham|lton|an_ the interac-
natural way. The velocity of a photon is different from the tion term. On the microscopic level, such an interaction is

phase or the group velocity and, to my knowledge, is a newiather complicated, but here | will take it into account in a
concept. ’ ' phenomenological way. Let us begin with stationary states of

| show in Sec. IV that the motion of the dielectric can be 1€ Photon in a homogeneous dielectric. For a stationary
connected with the optical analog of the vector potentialState the wave function takes on the form
This idea has been already presented in the literature, see E(r)+iH(r)
Refs.[7,8]. What is new here is that the concept of the vector ,=¢,(r)exp—iwt), where gow(r):{E . }

X : L (r)—1iH(r)
potential of the medium can be extended for relativistic ve-
locities of the medium. With the help of the scalar and vector 5
potentials of the medium one can define some optical andaFhe propagating photon in every time and in every space

point “feels” the same coupling with the medium. We may
try to describe the interaction by a single constant coupling
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the interaction depends anand will be modeled by a func- The integral form of the interaction term makes the relation
tion Q,(r). Sometimes, | want to restrict considerations tobetween field andE nonlocal in time, i.e.,

the nonmagnetic media, i.e.,= 1. It means that the medium
is coupled only to the electric part of the photon wave func-
tion. Generally, the couplings of the medium with the elec-
tric and magnetic part of the wave function may be different. ) o )
To take it into account | introduce two real and symmetricEduation(12) simplifies in some special cases. For example,
matricesy and » which split the wave function,, into elec-  IN @ nondispersivenedium

tric and magnetic parts

D(t,r)=E(t,r)+47rf x(7)E(t—7,r)d7. (13

Q,(N=4mx(Nho, (14)
—+ =
YWok 1u=Va, © where x(r) does not depend om, Eq. (12) becomes
E iH .
7%:{5 and Wf[_m}, @ a1+ Amx(r) y)=Hy (15)
In this case it is possible to construct soeféectivewave
11 -1 I 11 g  function (and Hamiltoniah and such an effective form is
7=50 1 1| YTl o) ®  usedin Refs[1-3].

o . . . Another interesting case is whéd(r) is independenbf
The projection operators, 7 fulfill the following relations, o, thenflep(t,r):Q(r)zp(t,r). In this case the similarity to

. 2_ 2_ _ .

.8, y°=7, =7, yn=0. Thus the case of the propagating yhe case of the electron in an external field is the most ap-
photon in inhomogeneous nonmagnetic dielectric can beealing. For simplicity, in the next sections, | restrict the
modeled in the following way: discussion to stationary states.

hogo=Hibo~ Lulr)7de. ® Ill. THE MASS AND VELOCITY OF PHOTON IN THE
| interpret the ternf} ,(r) vy as apotential energyperator of MEDIUM
the photon in dielectric. In order to see what is the meaning
of the quantityQ (r) in the classical language, one may
translate Eq(9) into the ordinary form of nonvacuum Max-
well equations

When the couplings with the electrical and magnetic parts
are taken into account, the ScHinger equation takes on the
form

—iw[1+47x,(N]E=CVXH, ioH=CVXE, (10 hogo=Hpo= QoMo ndy. (10

Q,(r),I',(r) have interpretation of potential energies.
where x,(r)= i Q4(r) ) I',(r) is connected with magnetic_ susceptibility_ﬂ(r)
47 ho =(1/4m)T" ,(r)/hw. In order to obtain the connection be-
o ) _ _ tween thetotal energyand momentunone may iterate this
;l'-l:r:'llj'tSQW(?r)ls directly connected with the dielectric Suscep- ¢qyation. In the case of a homogeneous medium one obtains
ibility x,(r).
It is easy to generalize this approach and write Maxwell (ﬁw)2¢w=[H$—(thw+ hol ,+Q, 0 )],, (A7)
equations for dispersive media in the form of a Sclmger
equation. If simultaneously many frequencies are present iwhere the identitie$d;y+ yH;=H;, Hin+ nH;=H; have
the medium, then it is reasonable to expémdm the quan- been used.
tum mechanical point of view—indistinguishable alterna- Equation(17) is in fact the classical wave equation. It is
tives) that the interaction of medium with the photon in sucheasy to note that
a nonstationarystate is described by superposition of single-

frequency interaction terms. Thus, if the photon is described Q, I, Q,Lb, 2
! X —t—+—>=g,u,—1=n,"—1 (19
by a wave packets(t,r), then the interaction of the packet ho ho (ho)? “°7° ® ’
with the medium can be described by an integral opet@gor o -
in the following way: wheree,,un, are the permittivity and permeability of the

medium, andh,, is a refractive index, and also that
ﬁLw(t,r)=J Qu(Ng,(tr)de H.2=c?(p-9)?=c?p? (p-4,=0). (19

Thus, puttingp=—i4V in Eq. (17) one obtains
=f Q,(Ne (Nexp—iot)do. (11 putingp 9-(47
2
2 2@

The equation of motion of the photon takes on the quasi- Vi, z ¥,.=0. (20
Schralinger form

R The termn? w? mixes the kinetic and potential terms of the

ihop=Hip— yQ . (120  Schralinger equatiorf16). From my point of view it is more
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natural to interpret Eq(17) in another way. That is, to put Jow JE c
E=%w and to rewrite Eq(17) as a connection betwedh Vg= == . (29
X ak  ap an
andp in the form n,+to——
w

E— \/c2p2+ (Qw—Fw)z_ E(QerFw)- 21) In the nondispersivecase Qn/&sz) the group velocity is
4 2 equal to the phase velocity. On the other hand, the group
velocity v4 is equal tov in the independentof « case
It is apparent thakE is the energy of a massive relativistic (9Q/Jw=0,0I'/dw=0). | think that one should consider the
particle in an external field. Thus the photon in the dielectricpossibility thatv is really the true velocity of the photon in

gains the masm given by the dielectric. Certainly, the velocity of photon in the dielec-
) tric medium is not the question of definition. The answer can
54 (Q,—T,) give only an experiment.
mect=s ——— (22 o ; ;
4 ' Note thatiw plays twodistinctroles in the above descrip-

tion. It is the total energy and apart it ésparameterdeter-
The photon gains the mass, because of the interaction witiining photon-medium interaction. It is the reason why the
the sea of charges in the dielectric. It reminds one of Feynright-hand side of Eq(21) depends on.
man’s remark: “mass is interactions.” The term At the end of this section | briefly comment the case of
the wave packet
U=-3(Q,+T,) (23)
) ) . i . ) f lﬂwdw:f g (rexp —iwt)dw. (30
is a classical potential energy. It confirms the previous inter-
pretation of the quantitie® , andI" , as some potential en-
ergies. Equation(22) predicts that the mass of photon be-
comes zero not only in empty spa¢ehen Q, and I',,
vanish but also wher() ,=1I",, (equivalentlye ,= u,,).
Thus the wave equatiofil7) takes on the form of the
Klein-Gordon equation

For every Fourier component of the packet one may write
Schralinger equatior(16) and thus the Klein-Gordon equa-
tion (24). Because of different particle velocitiesthe wave
packet disperses. If the dispersion of velocitiesAis the
width of the packet igin one dimensiohincreasing in time
asAx=Av-t. The packet describemephoton in a nonsta-
(24) tionary state(the energy and the mass of the photon are not
precisely determingdand Ax is the region in which it is
possible to detect it. Usually the beam of light contains many
photons. It means that all the photons are in the same one-

(E_U)wa:(c2p2+m204) lvbw .

Certainly, the massive photon in the dielectric has energy

2 particle nonstationary stat80). Now, in the regiomAx you
E= m +U. (25) can detect many photons in different points at the same time.
V1—(v?/c?) The probability is proportional to the rate of detection, and

thus to the energy density at a given point. You have a mac-
PuttingE=%w and using Eqs(22) and(23) one can calcu- roscopic quantum state.
late from Eq.(25) the velocity v of photon in the dielectric:

IV. THE VECTOR POTENTIAL OF THE MEDIUM
2

2
Yo M (26) Developing an analogy with the theory of charged par-
c (8ot o) ticles it is interesting to construct and examine the conse-
) ) , quences of the vector potential of the mediénin the case
Note thatv is the velocity of the photoras a particle It ¢ the photon. Replacing— P+ A, wherep is kinetical and
never exceeds. The remarkable feature is thats equal to  p canonical momentum. the Scliinger equatior(16) be-
c not only in empty space but alsodf,= u,, (as one should  -5mes ’

expect because then the photon mass is)zétonowing m
and v one can calculate the photon momentum

1 0
ﬁwl/lwzc(P+A)S|:0 _1:|11//w_9w(r)’y‘1[/w_rw(r)7]djw'

mv ho (32)
P oae e @0
—(v7c) To determine the situation, | suppose that the light source

emitting photons of energiedw rests with respect to the
observer. Then, as will be shown, the physical meaning of
the vector potential of the medium is directly connected with
the velocityu of the medium. Note, there is no Doppler shift

The velocity v is neither the phase nor group velocity. The
phase velocityv,, of the photon is

v hzfz Ez < (where p=#Kk). (28) between the observer and the source and therefore the ob-
Mk op ® served frequency is the same as the source frequency.
Expressing the Schdinger equatior(31) in the classical
And the group velocityy, is language one finds
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2

®D=iVXH, —B=-iVXE Do Bt P e E 4 St
¢ D=IVXH, —B=-IVXE, B Al mzﬁx 1o
(32 ) (39)
D=¢,E+axH, B=u,H—axE, 1-8 Eolto—1 -
B=upoHi+ 7 . BZ/J’a)HL_ mﬁx E .
wherea=A/(%w/c) is a dimensionless vector potential of wre wre
the medium. . o _ One immediately finds
This may be compared with the nonrelativistic approxi-
mation of the Minkowski relation$9,10] obliging for uni- Eoty—1
formly moving dielectric: a(p)= [y (39
D=¢,E+(e,u,~1)BXH, and as well the other parameterssag ¢, ,,, etc.
) (33 For a uniformly moving homogeneous medium the result
B=u, H-(e u,—1)BXE, (39) is exact. To a good approximation it can be useful as

well in the case of a nonuniformly moving inhomogeneous
where B=u/c. One finds immediately the connection be- medium provided that the potentia®, I' and the flowu
tween vector potentiad and the velocityu of the medium vary only gradually, i.e., do not vary significantly over one
optical wavelength and one optical cycle.
a= (e, u,—1)B. (34 For nonrelativistic velocities one can immediately write
the connection between energy and momentum simply by
The result is in agreement with Refs],[8], where it has substitution in Eq(21), p—P+A:
been obtained in another way.
If one wants to examine the purely relativistic velocities - \/ ) ) (Qw—l“a,)2 1
case, the form of the Schiinger equation(31) must be E=\/Cc(P+A) +T_§(Qw+rw)' (40
changed. One reason is that in the nonrelativistic velocities
case we assumed that the couplings with the medium are theis possible becaudas one can easily check with the help
same as in the case of the resting medium. It does not need 9 Maxwell equations(32)] the divergence conditiolV - D
be true. The second reason is that the moving medium in factQ,vV-B=0 is equivalent to the conditiop- =0 (simi-
produces anisotropy of the whole system. This is not takemarly as it was in the case of the resting medjuiquation
into account in the nonrelativistic velocities case. Thereforg40) is exact for a uniformly moving medium, and a good
one should admit that the couplings for fields perpendiculaapproximation in the case of a nonuniformly moving inho-
and parallel with respect to the velocity of the mediyin mogeneous medium. Note that the mass of the photon is the
may be different. Thus one should consider the followingsame as it was in the resting medium.
Schralinger equation: If one wants to iterate the relativistic Schlinger equa-
tion (35 it will be advantageous to write it in the more

1 0 E, suitable form
ﬁwww:C(P_}—A)' 0 -1 lpa)_QLw(r) EL
fi =(H;{— Q) ,Riy—Q, R y—T',R
0 E, ; i, ; iH, oh,=Hi=Q,Ryy—Q, R y—T'1,Ry7

B Hw(r) EH N Lw(r) _|HJ_ N ”w(r) _iHH ’ _FLwRLw)l;bw! (41)

(35 o , .
where projection operatofR, andR, have been defined in

Our task is to find the relativistic form oA=(%#w/c)a. |  the following way:R V=V, andR, V=V, (V is a vector|

look for the solution in the form and_L with respect to the velocity of the medionThe R,
and R, commute withy, n. The HamiltonianH; has the

a=a(B)B, (36)  same structure as in the case of the resting medium but now

p=P+A. Other useful relations ard;y+yH;=H;, Hnp
where a(B) is yet an unknown function. Expressing the + yH;=H;, and H;R,+RH;=H;—H}, H{R, +R H;
Schralinger equatior(35) in the classical language one ob- =H+H}. The HamiltonianH} differs from H; in such a
tains Maxwell equations with material relations in the form way thatp- S is replaced byp,-S. In general the obtained

result of the iteration is rather complicated and | will not

D=z,E+e, ,E +a(B)BXH,, write it down. | only examine here the simplest but physi-
(370  cally most interesting case when the light in the form of a
B=,H +p, JH, +a(B)BXE, . plane wave propagates in the same direction as the medium

moves. In this case the result has exactly the same form as
(g is defined as +Q,/%iw, etc). The material relations Eq. (40) with the only difference thaf), is replaced by}, ,
should be compared with the relativistic form of the andl', by I', . In particular, the mass of photan, in the
Minkowski relations[9,10] relativistic case is given by
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m 02§|Qlw_rj_w|:£ 1-p? e plho Ee A U J(mc?) _V_ZZ%

B 2 21— p p2!%0 Ho gt or ar c? gt
_ 1R 2 i3 1-/1- Vz) o (14 41- Vz) al‘w}
Ty Ly (42) 2 c2) ar 2 or |

o (47)
wherem= e ,— u, | w/2c? is the mass of the photon in the H=—VXA.

changed but it must be so, because the mass of photon inthg T depend on place; therefore the mass of the photon is
medium (never mind resting or movingis always deter- position dependent. The fiel#&andH are gauge invariant.

mined by the coupling& andl') and these couplings in the T} 4 change of the potentials, Q,,I", in the following
moving medium have changed. The change of mass does ngt,, - e

appear in the nonrelativistic velocities case because it is only

the second order effewith respect tgg). In the following | A=A+VE Q' =0 — ‘?_f r=r -2
restrict considerations to the nonrelativistically moving me- ' ©TTe ot O |
dia, which, no doubt, is reasonable from a practical point ofypes not change the fieldd7). Heref is whatever function
view. It is interesting that in some limited sense it is possibleyf time and space.

to develop photodynamics, describing the behavior of the

photon, in close analogy to the electrodynamics, as the V. SUMMARY

theory of charged patrticles. In particular one can determine a
classical force= acting on the photon

(48)

| find that the influence of the medium on a photon can be
described by some scalar and vector potentials. Scalar poten-
F=p= P+A. (43) tials are directly connected with permittivity and permeabil-
ity of the medium; the vector potential is connected with the
velocity of the medium. The main novelty in the paper is that
the notion of vector potential of the medium can be con-

In the case of the nonuniformly moving homogeneous me
dium from the Hamiltoniar{40) one finds

IA structed also for relativistic velocities of the medium. Addi-
c’p- — tional new results are the formulas for the mass of photon in

S5 _ ﬁ — or B % (44) resting and moving dielectric and the velocity of the photon
ar E-U ar’ as a patrticle. The velocity is different from the phase and the

) o group velocity. Quite interesting is the fact that the photon
HereE—U andp are given by Eqs(29), (27), andwitisthe  yglocity is equal toc not only in vacuum but also i,
particle velocity of photon given by E@26). The analogs of =pu,. A consequence of describing the medium through

electricE and magnetidi fields can be defined as scalar and vector potentials is the existence of analogs of
electric and magnetic fields, as well as the optical Lorentz

E:ﬁ A=_—VxA (45 force which describe the influence of the medium on the

at’ ' photon. Just as in the theory of charged particles, the poten-

) ) ) tials are gauge fields and the analogs of electric and magnetic
Therefore the forc& is nothing but the optical Lorentz force fg|ds are gauge invariant.
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