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Propagation of photons in resting and moving media
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The propagation of photon in a dielectric may be described with the help of the scalar and vector potentials
of the medium. The main novelty of the paper is that the concept of the vector potential~which is connected
with the velocity of the medium! can be extended to relativistic velocities of the medium. The position-
dependent photon wave function was used to describe the propagation of the photon. The new concepts of the
velocity of photon as particle and the photon mass in the dielectric medium were proposed.
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I. INTRODUCTION

Consider a photon in a dielectric medium. But what is
photon? In modern physics a photon is nothing more t
quantum excitation of the electromagnetic field. We ha
learned from quantum electrodynamics that in the dielect
in fact, there are no photons but polaritons, i.e., excitation
electromagnetic field coupled to the medium. However
different point of view is also possible. Remember the c
of an electron in an external electromagnetic field. On
first quantization level the electron is treated as a quan
object moving in the classical field. In this paper I develop
similar description for a photon. The photon treated a
quantum object ‘‘feels’’ the medium as an external classi
field. To describe a photon in terms of a one-particle wa
function, i.e., on thefirst quantization level, I follow the
methods presented in Refs.@1–3#. Another approach was
proposed in Ref. @4#. The concept of the position
representation photon wave function has a long history an
still controversial. Nevertheless I do not want to discuss
question here. The reader interested in this problem is
ferred to Refs.@1–4# and references therein.

The paper is organized in the following way. In Sec. II
develop the description of a photon in a medium in terms
the photon wave function. Some attempts of this kind ha
been presented in Refs.@1–3#. What is new in my approach
is to show that the influence of the medium on the pho
can be described through some potentials. Generally the
is not new, see, e.g., Refs.@5,6#, but here I realize it within
the formalism of the photon wave function. On this basis,
Sec. III, the nonzero mass of the photon and the concep
the velocity of the photon as a particle appear in a qu
natural way. The velocity of a photon is different from th
phase or the group velocity and, to my knowledge, is a n
concept.

I show in Sec. IV that the motion of the dielectric can
connected with the optical analog of the vector potent
This idea has been already presented in the literature,
Refs.@7,8#. What is new here is that the concept of the vec
potential of the medium can be extended for relativistic
locities of the medium. With the help of the scalar and vec
potentials of the medium one can define some optical a
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logs of electric and magnetic fields, and the optical analog
the Lorentz force~acting on the photon in the medium!. The
potentials are gauge fields and the analogs of electric
magnetic fields are gauge invariant.

II. THE SCALAR POTENTIAL OF MEDIUM

In Refs. @1–3# the following form of the Schro¨dinger
equation for free photon was proposed:

i\] tF5H fF, ~1!

F5FE~ t,r !1 iH~ t,r !

E~ t,r !2 iH~ t,r !G , H f5cF p•S,0
0,2p•SG , ~2!

p52 i\“, momentum of photon; (Si)kl52 i« ikl , spin pho-
ton matrix (« ikl , antisymmetric Levi-Civita symbol!.

On the classical language, the equations are equivale
the following Maxwell equations:

] tE5c“3H, ] tH52c“3E, D5E, B5H, ~3!

describing free fields in vacuum. Since all the informati
carried by functionF is contained in its positive energ
~positive frequency! partF(1), following Ref. @3#, I take this
part as the true photon wave function and denote it asc,

c5F~1 !. ~4!

To become a complete set of Maxwell equations, Eq.~3!
must be supplied by divergence conditions“•E50, “•H
50. It is equivalent to the relationp•c50.

In order to describe the propagation of the photon in
electric, one should include in the Hamiltonian the intera
tion term. On the microscopic level, such an interaction
rather complicated, but here I will take it into account in
phenomenological way. Let us begin with stationary state
the photon in a homogeneous dielectric. For a station
state the wave function takes on the form

cv5wv~r !exp~2 ivt !, where wv~r !5FE~r !1 iH~r !

E~r !2 iH~r !G .
~5!

The propagating photon in every time and in every sp
point ‘‘feels’’ the same coupling with the medium. We ma
try to describe the interaction by a single constant coupl
valueVv . If some inhomogeneities are in the dielectric, th
©2001 The American Physical Society03-1
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the interaction depends onr and will be modeled by a func
tion Vv(r ). Sometimes, I want to restrict considerations
the nonmagnetic media, i.e.,m51. It means that the medium
is coupled only to the electric part of the photon wave fun
tion. Generally, the couplings of the medium with the ele
tric and magnetic part of the wave function may be differe
To take it into account I introduce two real and symmet
matricesg andh which split the wave functioncv into elec-
tric and magnetic parts

gcv1hcv5cv , ~6!

gcv5FEEG and hcv5F iH
2 iHG , ~7!

h5
1

2 F 1 21

21 1 G and g5
1

2 F1 1

1 1G . ~8!

The projection operatorsg, h fulfill the following relations,
i.e.,g25g, h25h, gh50. Thus the case of the propagatin
photon in inhomogeneous nonmagnetic dielectric can
modeled in the following way:

\vcv5H fcv2Vv~r !gcv . ~9!

I interpret the termVv(r )g as apotential energyoperator of
the photon in dielectric. In order to see what is the mean
of the quantityVv(r ) in the classical language, one ma
translate Eq.~9! into the ordinary form of nonvacuum Max
well equations

2 iv@114pxv~r !#E5c“3H, ivH5c“3E, ~10!

where xv~r !5
1

4p

Vv~r !

\v
.

ThusVv(r ) is directly connected with the dielectric susce
tibility xv(r ).

It is easy to generalize this approach and write Maxw
equations for dispersive media in the form of a Schro¨dinger
equation. If simultaneously many frequencies are presen
the medium, then it is reasonable to expect~from the quan-
tum mechanical point of view—indistinguishable altern
tives! that the interaction of medium with the photon in su
a nonstationarystate is described by superposition of sing
frequency interaction terms. Thus, if the photon is descri
by a wave packetc(t,r ), then the interaction of the packe
with the medium can be described by an integral operatorV̂L
in the following way:

V̂Lc~ t,r !5E Vv~r !cv~ t,r !dv

5E Vv~r !wv~r !exp~2 ivt !dv. ~11!

The equation of motion of the photon takes on the qua
Schrödinger form

i\] tc5H fc2gV̂Lc. ~12!
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The integral form of the interaction term makes the relat
between fieldsD andE nonlocal in time, i.e.,

D~ t,r !5E~ t,r !14pE x~t!E~ t2t,r !dt. ~13!

Equation~12! simplifies in some special cases. For examp
in a nondispersivemedium

Vv~r !54px~r !\v, ~14!

wherex(r ) does not depend onv, Eq. ~12! becomes

i\] t~114px~r !g!c5H fc. ~15!

In this case it is possible to construct someeffectivewave
function ~and Hamiltonian! and such an effective form is
used in Refs.@1–3#.

Another interesting case is whenV(r ) is independentof

v, thenV̂Lc(t,r )5V(r )c(t,r ). In this case the similarity to
the case of the electron in an external field is the most
pealing. For simplicity, in the next sections, I restrict th
discussion to stationary states.

III. THE MASS AND VELOCITY OF PHOTON IN THE
MEDIUM

When the couplings with the electrical and magnetic pa
are taken into account, the Schro¨dinger equation takes on th
form

\vcv5H fcv2Vv~r !gcv2Gv~r !hcv . ~16!

Vv(r ),Gv(r ) have interpretation of potential energie
Gv(r ) is connected with magnetic susceptibilityxv

m(r )
5(1/4p)Gv(r )/\v. In order to obtain the connection be
tween thetotal energyand momentumone may iterate this
equation. In the case of a homogeneous medium one ob

~\v!2cv5@H f
22~\vVv1\vGv1VvGv!#cv , ~17!

where the identitiesH fg1gH f5H f , H fh1hH f5H f have
been used.

Equation~17! is in fact the classical wave equation. It
easy to note that

Vv

\v
1

Gv

\v
1

VvGv

~\v!2 5«vmv215nv
221, ~18!

where «v ,mv are the permittivity and permeability of th
medium, andnv is a refractive index, and also that

H f
25c2~p•S!25c2p2 ~p•cv50!. ~19!

Thus, puttingp52 i\“ in Eq. ~17! one obtains

“

2cv1nv
2 v2

c2 cv50. ~20!

The termnv
2 v2 mixes the kinetic and potential terms of th

Schrödinger equation~16!. From my point of view it is more
3-2
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natural to interpret Eq.~17! in another way. That is, to pu
E[\v and to rewrite Eq.~17! as a connection betweenE
andp in the form

E5Ac2p21
~Vv2Gv!2

4
2

1

2
~Vv1Gv!. ~21!

It is apparent thatE is the energy of a massive relativist
particle in an external field. Thus the photon in the dielec
gains the massm given by

m2c4[
~Vv2Gv!2

4
. ~22!

The photon gains the mass, because of the interaction
the sea of charges in the dielectric. It reminds one of Fe
man’s remark: ‘‘mass is interactions.’’ The term

U52 1
2 ~Vv1Gv! ~23!

is a classical potential energy. It confirms the previous in
pretation of the quantitiesVv andGv as some potential en
ergies. Equation~22! predicts that the mass of photon b
comes zero not only in empty space~when Vv and Gv

vanish! but also whenVv5Gv ~equivalently«v5mv).
Thus the wave equation~17! takes on the form of the

Klein-Gordon equation

~E2U !2cv5~c2p21m2c4!cv . ~24!

Certainly, the massive photon in the dielectric has energ

E5
mc2

A12~n2/c2!
1U. ~25!

PuttingE[\v and using Eqs.~22! and ~23! one can calcu-
late from Eq.~25! the velocityn of photon in the dielectric:

n2

c2 512
~«v2mv!2

~«v1mv!2 , ~26!

Note thatn is the velocity of the photonas a particle. It
never exceedsc. The remarkable feature is thatn is equal to
c not only in empty space but also if«v5mv ~as one should
expect because then the photon mass is zero!. Knowing m
andn one can calculate the photon momentum

p5
mn

A12~n2/c2!
5nv

\v

c
. ~27!

The velocityn is neither the phase nor group velocity. Th
phase velocitynph of the photon is

nph[
v

k
[

E

p
5

c

nv
~where p[\k!. ~28!

And the group velocityng is
02660
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ng[
]v

]k
[

]E

]p
5

c

nv1v
]n

]v

. ~29!

In the nondispersivecase (]n/]v50) the group velocity is
equal to the phase velocity. On the other hand, the gr
velocity ng is equal to n in the independentof v case
(]V/]v50,]G/]v50). I think that one should consider th
possibility thatn is really the true velocity of the photon in
the dielectric. Certainly, the velocity of photon in the diele
tric medium is not the question of definition. The answer c
give only an experiment.

Note that\v plays twodistinctroles in the above descrip
tion. It is the total energy and apart it isa parameterdeter-
mining photon-medium interaction. It is the reason why t
right-hand side of Eq.~21! depends onv.

At the end of this section I briefly comment the case
the wave packet

E cv dv5E wv~r !exp~2 ivt !dv. ~30!

For every Fourier component of the packet one may w
Schrödinger equation~16! and thus the Klein-Gordon equa
tion ~24!. Because of different particle velocitiesn the wave
packet disperses. If the dispersion of velocities isDn the
width of the packet is~in one dimension! increasing in time
asDx5Dn•t. The packet describesonephoton in a nonsta-
tionary state~the energy and the mass of the photon are
precisely determined! and Dx is the region in which it is
possible to detect it. Usually the beam of light contains ma
photons. It means that all the photons are in the same o
particle nonstationary state~30!. Now, in the regionDx you
can detect many photons in different points at the same ti
The probability is proportional to the rate of detection, a
thus to the energy density at a given point. You have a m
roscopic quantum state.

IV. THE VECTOR POTENTIAL OF THE MEDIUM

Developing an analogy with the theory of charged p
ticles it is interesting to construct and examine the con
quences of the vector potential of the mediumA in the case
of the photon. Replacingp→P1A, wherep is kinetical and
P canonical momentum, the Schro¨dinger equation~16! be-
comes

\vcv5c~P1A!•SF1 0

0 21Gcv2Vv~r !gcv2Gv~r !hcv .

~31!

To determine the situation, I suppose that the light sou
emitting photons of energies\v rests with respect to the
observer. Then, as will be shown, the physical meaning
the vector potential of the medium is directly connected w
the velocityu of the medium. Note, there is no Doppler sh
between the observer and the source and therefore the
served frequency is the same as the source frequency.

Expressing the Schro¨dinger equation~31! in the classical
language one finds
3-3
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v

c
D5 i“3H,

v

c
B52 i“3E,

~32!
D5«vE1a3H, B5mvH2a3E,

where a5A/(\v/c) is a dimensionless vector potential
the medium.

This may be compared with the nonrelativistic appro
mation of the Minkowski relations@9,10# obliging for uni-
formly moving dielectric:

D5«vE1~«vmv21!bW 3H,
~33!

B5mvH2~«vmv21!bW 3E,

where bW 5u/c. One finds immediately the connection b
tween vector potentiala and the velocityu of the medium

a5~«vmv21!bW . ~34!

The result is in agreement with Refs.@7#,@8#, where it has
been obtained in another way.

If one wants to examine the purely relativistic velociti
case, the form of the Schro¨dinger equation~31! must be
changed. One reason is that in the nonrelativistic veloci
case we assumed that the couplings with the medium are
same as in the case of the resting medium. It does not ne
be true. The second reason is that the moving medium in
produces anisotropy of the whole system. This is not ta
into account in the nonrelativistic velocities case. Theref
one should admit that the couplings for fields perpendicu
and parallel with respect to the velocity of the mediumbW
may be different. Thus one should consider the followi
Schrödinger equation:

\vcv5c~P1A!•SF1 0

0 21Gcv2V'v~r !FE'

E'
G

2V iv~r !FEi

Ei
G2G'v~r !F iH'

2 iH'
G2G iv~r !F iHi

2 iHi
G .

~35!

Our task is to find the relativistic form ofA5(\v/c)a. I
look for the solution in the form

a5a~b!bW , ~36!

where a(b) is yet an unknown function. Expressing th
Schrödinger equation~35! in the classical language one o
tains Maxwell equations with material relations in the for

D5« ivEi1«'vE'1a~b!bW 3H' ,
~37!

B5m ivHi1m'vH'1a~b!bW 3E' .

(« i is defined as 11V i /\v, etc.!. The material relations
should be compared with the relativistic form of th
Minkowski relations@9,10#
02660
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D5«vEi1
12b2

12«vmvb2 «vE'1
«vmv21

12«vmvb2 bW 3H' ,

~38!

B5mvHi1
12b2

12«vmvb2 mvH'2
«vmv21

12«vmvb2 bW 3E' .

One immediately finds

a~b!5
«vmv21

12«vmvb2 , ~39!

and as well the other parameters as« iv ,«'v , etc.
For a uniformly moving homogeneous medium the res

~39! is exact. To a good approximation it can be useful
well in the case of a nonuniformly moving inhomogeneo
medium provided that the potentialsV, G and the flowu
vary only gradually, i.e., do not vary significantly over on
optical wavelength and one optical cycle.

For nonrelativistic velocities one can immediately wri
the connection between energy and momentum simply
substitution in Eq.~21!, p→P1A:

E5Ac2~P1A!21
~Vv2Gv!2

4
2

1

2
~Vv1Gv!. ~40!

It is possible because@as one can easily check with the he
of Maxwell equations~32!# the divergence condition“•D
50,“•B50 is equivalent to the conditionp•c50 ~simi-
larly as it was in the case of the resting medium!. Equation
~40! is exact for a uniformly moving medium, and a goo
approximation in the case of a nonuniformly moving inh
mogeneous medium. Note that the mass of the photon is
same as it was in the resting medium.

If one wants to iterate the relativistic Schro¨dinger equa-
tion ~35! it will be advantageous to write it in the mor
suitable form

\vcv5~H f2V ivRig2V'vR'g2G ivRih

2G'vR'v!cv , ~41!

where projection operatorsRi andR' have been defined in
the following way:RiV5Vi andR'V5V' ~V is a vector,i
and' with respect to the velocity of the medium!. The Ri

and R' commute withg, h. The HamiltonianH f has the
same structure as in the case of the resting medium but
p5P1A. Other useful relations areH fg1gH f5H f , H fh
1hH f5H f , and H fRi1RiH f5H f2H f

i , H fR'1R'H f

5H f1H f
i . The HamiltonianH f

i differs from H f in such a
way thatp•S is replaced bypi•S. In general the obtained
result of the iteration is rather complicated and I will n
write it down. I only examine here the simplest but phy
cally most interesting case when the light in the form o
plane wave propagates in the same direction as the med
moves. In this case the result has exactly the same form
Eq. ~40! with the only difference thatVv is replaced byV'v

andGv by G'v . In particular, the mass of photonmb in the
relativistic case is given by
3-4
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mbc2[
uV'v2G'vu

2
5

1

2

12b2

12«vmvb2 u«v2mvu\v

5
12b2

12«vmvb2 mc2, ~42!

wherem5u«v2mvu\v/2c2 is the mass of the photon in th
rest medium. At first, it might seem strange that the mass
changed but it must be so, because the mass of photon i
medium ~never mind resting or moving! is always deter-
mined by the couplings~V andG! and these couplings in th
moving medium have changed. The change of mass doe
appear in the nonrelativistic velocities case because it is o
the second order effect~with respect tob!. In the following I
restrict considerations to the nonrelativistically moving m
dia, which, no doubt, is reasonable from a practical poin
view. It is interesting that in some limited sense it is possi
to develop photodynamics, describing the behavior of
photon, in close analogy to the electrodynamics, as
theory of charged particles. In particular one can determin
classical forceF acting on the photon

F5ṗ5Ṗ1Ȧ. ~43!

In the case of the nonuniformly moving homogeneous m
dium from the Hamiltonian~40! one finds

Ṗ52
]E

]r
52

c2p•
]A

]r

E2U
52n•

]A

]r
. ~44!

HereE2U andp are given by Eqs.~25!, ~27!, andn it is the
particle velocity of photon given by Eq.~26!. The analogs of
electric Ẽ and magneticH̃ fields can be defined as

Ẽ5
]A

]t
, H̃52“3A. ~45!

Therefore the forceF is nothing but the optical Lorentz forc

F5Ẽ1n3H̃. ~46!

In the more general case of a nonuniformly moving inhom
geneous medium one obtains a bit more complicated res
I
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Ẽ5
]A

]t
2

]U

]r
2

]~mc2!

]r
A12

n2

c25
]A

]t

1
1

2 H S 12A12
n2

c2D ]Vv

]r
1S 11A12

n2

c2D ]Gv

]r J ,

~47!
H̃52“3A.

Note that in the inhomogeneous medium the couplin
Vv ,Gv depend on place; therefore the mass of the photo
position dependent. The fieldsẼ andH̃ are gauge invariant
The change of the potentialsA, Vv ,Gv in the following
way:

A85A1“ f , Vv8 5Vv2
] f

]t
, Gv8 5Gv2

] f

]t
~48!

does not change the fields~47!. Here f is whatever function
of time and space.

V. SUMMARY

I find that the influence of the medium on a photon can
described by some scalar and vector potentials. Scalar po
tials are directly connected with permittivity and permeab
ity of the medium; the vector potential is connected with t
velocity of the medium. The main novelty in the paper is th
the notion of vector potential of the medium can be co
structed also for relativistic velocities of the medium. Add
tional new results are the formulas for the mass of photon
resting and moving dielectric and the velocity of the phot
as a particle. The velocity is different from the phase and
group velocity. Quite interesting is the fact that the phot
velocity is equal toc not only in vacuum but also if«v

5mv . A consequence of describing the medium throu
scalar and vector potentials is the existence of analog
electric and magnetic fields, as well as the optical Lore
force which describe the influence of the medium on
photon. Just as in the theory of charged particles, the po
tials are gauge fields and the analogs of electric and magn
fields are gauge invariant.
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